Proton irradiation of a swept charge device at cryogenic temperature and the subsequent annealing

نویسندگان

  • J. P. D. Gow
  • P. H. Smith
  • N. J. Murray
چکیده

A number of studies have demonstrated that a room temperature proton irradiation may not be sufficient to provide an accurate estimation of the impact of the space radiation environment on detector performance. This is a result of the relationship between defect mobility and temperature, causing the performance to vary subject to the temperature history of the device from the point at which it was irradiated. Results measured using Charge Coupled Devices (CCD) irradiated at room temperature therefore tend to differ from those taken when the device was irradiated at a cryogenic temperature, more appropriate considering the operating conditions in space, impacting the prediction of in-flight performance. This paper describes the cryogenic irradiation, and subsequent annealing of an e2v technologies Swept Charge Device (SCD) CCD236 irradiated at -35.4 C with a 10 MeV equivalent proton fluence of 5.0×10 protons.cm. The CCD236 is a large area (4.4 cm) X-ray detector that will be flown on-board the Chandrayaan-2 and Hard X-ray Modulation Telescope spacecraft, in the Chandrayaan-2 Large Area Soft X-ray Spectrometer and the Soft X-ray Detector respectively. The SCD is readout continually in order to benefit from intrinsic dither mode clocking, leading to suppression of the surface component of the dark current and allowing the detector to be operated at warmer temperatures than a conventional CCD. The SCD is therefore an excellent choice to test and demonstrate the variation in the impact of irradiation at cryogenic temperatures in comparison to a more typical room temperature irradiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Charge Transfer Efficiency in a p-channel CCD irradiated cryogenically and the impact of room temperature annealing

It is important to understand the impact of the space radiation environment on detector performance, thereby ensuring that the optimal operating conditions are selected for use in flight. The best way to achieve this is by irradiating the device using appropriate mission operating conditions, i.e. holding the device at mission operating temperature with the device powered and clocking. This pap...

متن کامل

Thin film silicon solar cells for space applications: Study of proton irradiation and thermal annealing effects on the characteristics of solar cells and individual layers

The paper reports on the effects of a proton irradiation campaign on a series of thin-film silicon solar cells (singleand double-junction). The effect of subsequent thermal annealing on solar cells degraded by proton irradiation is investigated. A low-temperature annealing behaviour can be observed (at temperatures around 100 to 160 C) for microcrystalline silicon solar cells. To further explor...

متن کامل

Initial Results from a Cryogenic Proton Irradiation of a p-channel CCD

The displacement damage hardness that can be achieved using p-channel charge coupled devices (CCD) was originally demonstrated in 1997 and since then a number of other studies have demonstrated an improved tolerance to radiationinduced CTI when compared to n-channel CCDs. A number of recent studies have also shown that the temperature history of the device after the irradiation impacts the perf...

متن کامل

Comparison of Tribological Behavior of Deep Cryogenic Treated Hot Work Tool Steel at Room and High Temperature

The deep cryogenic treatment is a complementary operation that is done on a variety of tool steels aimed at improving their abrasion resistance and hardness. In the case of the H13 hot-work steel, which is widely used at high temperatures as a hot-deformation tool, we need to determine the efficiency of subzero treatment on it at the working temperature. In this regard, this paper is focu...

متن کامل

Modeling and Experimental Study of Static Recovery and Mechanical Behavior of AA5052 Alloy During Cold-Working and Subsequent Annealing

In the present study, the mechanical behavior of AA5052 aluminum alloy during cold deformation and subsequent isothermal annealing in a temperature range of 225-300oC was investigated using the uniaxial tensile test data. It is found that by increasing the annealing time and temperature the material yield strength is decreased. The microstructural investigations of the annealed samples show tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015